123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206 |
- <!doctype html>
- <html lang="en">
-
- <head>
- <meta charset="utf-8">
-
- <title>reveal.js - Math Plugin</title>
-
- <meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
-
- <link rel="stylesheet" href="../dist/reveal.css">
- <link rel="stylesheet" href="../dist/theme/night.css" id="theme">
- </head>
-
- <body>
-
- <div class="reveal">
-
- <div class="slides">
-
- <section>
- <h2>reveal.js Math Plugin</h2>
- <p>Render math with KaTeX, MathJax 2 or MathJax 3</p>
- </section>
-
- <section>
- <h3>The Lorenz Equations</h3>
-
- \[\begin{aligned}
- \dot{x} & = \sigma(y-x) \\
- \dot{y} & = \rho x - y - xz \\
- \dot{z} & = -\beta z + xy
- \end{aligned} \]
- </section>
-
- <section>
- <h3>The Cauchy-Schwarz Inequality</h3>
-
- <script type="math/tex; mode=display">
- \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
- </script>
- </section>
-
- <section>
- <h3>A Cross Product Formula</h3>
-
- \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
- \mathbf{i} & \mathbf{j} & \mathbf{k} \\
- \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
- \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
- \end{vmatrix} \]
- </section>
-
- <section>
- <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
-
- \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
- </section>
-
- <section>
- <h3>An Identity of Ramanujan</h3>
-
- \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
- 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
- {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
- </section>
-
- <section>
- <h3>A Rogers-Ramanujan Identity</h3>
-
- \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
- \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
- </section>
-
- <section>
- <h3>Maxwell’s Equations</h3>
-
- \[ \begin{aligned}
- \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
- \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
- \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
- \]
- </section>
-
- <section>
- <h3>TeX Macros</h3>
-
- Here is a common vector space:
- \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\]
- used in functional analysis.
- </section>
-
- <section>
- <section>
- <h3>The Lorenz Equations</h3>
-
- <div class="fragment">
- \[\begin{aligned}
- \dot{x} & = \sigma(y-x) \\
- \dot{y} & = \rho x - y - xz \\
- \dot{z} & = -\beta z + xy
- \end{aligned} \]
- </div>
- </section>
-
- <section>
- <h3>The Cauchy-Schwarz Inequality</h3>
-
- <div class="fragment">
- \[ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \]
- </div>
- </section>
-
- <section>
- <h3>A Cross Product Formula</h3>
-
- <div class="fragment">
- \[\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix}
- \mathbf{i} & \mathbf{j} & \mathbf{k} \\
- \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\
- \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0
- \end{vmatrix} \]
- </div>
- </section>
-
- <section>
- <h3>The probability of getting \(k\) heads when flipping \(n\) coins is</h3>
-
- <div class="fragment">
- \[P(E) = {n \choose k} p^k (1-p)^{ n-k} \]
- </div>
- </section>
-
- <section>
- <h3>An Identity of Ramanujan</h3>
-
- <div class="fragment">
- \[ \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
- 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
- {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]
- </div>
- </section>
-
- <section>
- <h3>A Rogers-Ramanujan Identity</h3>
-
- <div class="fragment">
- \[ 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
- \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}\]
- </div>
- </section>
-
- <section>
- <h3>Maxwell’s Equations</h3>
-
- <div class="fragment">
- \[ \begin{aligned}
- \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
- \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
- \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}
- \]
- </div>
- </section>
-
- <section>
- <h3>TeX Macros</h3>
-
- Here is a common vector space:
- \[L^2(\R) = \set{u : \R \to \R}{\int_\R |u|^2 < +\infty}\]
- used in functional analysis.
- </section>
- </section>
-
- </div>
-
- </div>
-
- <script src="../dist/reveal.js"></script>
- <script src="../plugin/math/math.js"></script>
- <script>
- Reveal.initialize({
- history: true,
- transition: 'linear',
-
- mathjax2: {
- config: 'TeX-AMS_HTML-full',
- TeX: {
- Macros: {
- R: '\\mathbb{R}',
- set: [ '\\left\\{#1 \\; ; \\; #2\\right\\}', 2 ]
- }
- }
- },
-
-
-
-
-
-
-
- plugins: [ RevealMath.MathJax2 ]
- });
- </script>
-
- </body>
- </html>
|