# The MIT License (MIT) # # Copyright (c) 2019 Tom Schucker for Tea and Tech Time # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ `teaandtechtime_fft` ================================================================================ CircuitPython FFT Library * Author(s): Tom Schucker Implementation Notes --------------------- This variant comes from @thedod's `no-itertools` fork: https://github.com/thedod/CircuitPython_FFT/tree/no-itertools **Hardware:** **Software and Dependencies:** * Adafruit CircuitPython firmware for the supported boards: https://github.com/adafruit/circuitpython/releases """ # imports from math import pi, sin, cos, sqrt, pow, log import array __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/tschucker/Teaandtechtime_CircuitPython_FFT.git" #Computes the complex fft of the input array needs to be power of 2 length to work. def fft(x): N = len(x) if N <= 1: return x even = fft([x[i] for i in range(0, N, 2)]) odd = fft([x[i] for i in range(1, N, 2)]) T = [cos(2*pi*k/N)*odd[k].real+sin(2*pi*k/N)*odd[k].imag + (cos(2*pi*k/N)*odd[k].imag-sin(2*pi*k/N)*odd[k].real)*1j for k in range(N//2)] return [even[k].real + T[k].real + (even[k].imag + T[k].imag)*1j for k in range(N//2)] + \ [even[k].real - T[k].real + (even[k].imag - T[k].imag)*1j for k in range(N//2)] #Computes the complex inverse fft of the input array needs to be power of 2 length to work #not the most efficiant but uses the same fft code. def ifft(x): fft_len = float(len(x)) x_swap = [] for s in x: x_swap.append(s.imag + s.real*1j) temp = fft(x_swap) temp_swap = [] for s in temp: temp_swap.append((s.imag/fft_len) + (s.real/fft_len)*1j) return temp_swap #Computes the double sided spectrogram of the input array needs to be a power of 2 to work def spectrogram(x): freq = fft(x) temp_list = [] for f in freq: abs_val = abs(f) if abs_val != 0.0: temp_list.append(int(log(abs_val))) else: temp_list.append(0) return temp_list